Anthropic利用特徵解構神經網路提升模型的可解釋性
· 2023-10-12

Anthropic以特徵(Feature)的概念,對神經網路的神經元進行分群,藉以提高模型行為的解釋性,增加人工智慧應用的安全性和可靠性

OpenAI的競爭者Anthropic發表的最新人工智慧研究論文〈Decomposing Language Models With Dictionary Learning〉,提出一種稱為字典學習的方法,增加對神經網路的解釋性。這項研究讓Anthropic更能夠監控模型,進而引導模型的行為,提高企業和社會在採用人工智慧的安全性和可靠性。

由於神經網路是以資料進行訓練,而非根據規則的程式設計,每一步訓練,都會更新數百萬甚至數十億個參數,最終使模型得以更好地完成任務,但Anthropic提到,雖然研究人員可以理解訓練網路的數學運算,但是卻不真正明白模型是如何從一堆數學運算中,導出最後的行為。而這樣的狀況,使得研究人員很難判斷模型出現的問題,而且也難以進行修復。

雖然現今人類已經進行了數十年的神經科學研究,對於大腦的運作有了深入的了解,但是仍然有很多大腦中的謎團尚待解密。類似的情況,人工神經網路也存在難以完全理解的部分,只不過與真實大腦不同,研究人員可以透過實驗來探索其中的運作機制。

儘管如此,過去對神經元的實驗並沒有太多幫助,研究人員透過干預單一神經元,觀察該神經元對特定輸入的反應,他們發現,單一神經元的活化,與神經網路的整體行為並不一致。在小語言模型中,單一神經元會在英語對話、HTTP請求或是韓語文本等不相關的上下文都很活躍,電腦視覺模型中的同一神經元,可能會對貓臉和汽車都有反應。也就是說,在不同的情況下,神經元的活化可以代表著不同意義。

在Anthropic最新的研究中,研究人員擴大分析單位,不在單一的神經元中尋找規律,而是運用一種稱為特徵(Feature)的概念。每個特徵都會對應一群神經元活動模式,這為研究人員提供了新的分析途徑,能夠將複雜的神經網路解構成更容易理解的單位。

在Transformer語言模型中,研究人員成功將一個包含512個神經元的層,分解成超過4,000個特徵。這些特徵涵蓋了DNA序列、法律用語、HTTP請求、希伯來文和營養標示等範疇。此外,研究人員也確認了特徵的解釋性遠比單一神經元更高。

論文中也提到,研究人員發展了自動解釋方法,來驗證特徵的可解釋性。藉由大型語言模型來生成小模型特徵的描述,並以另一個模型的預測能力對描述進行評分,而實驗結果證實,特徵的得分仍高於神經元,如此便證實了特徵的活躍和模型下游行為具一致性。研究人員還發現,在不同模型間所學到的特徵大致通用,因此一個模型從特徵得到的經驗,可能適用於其他模型。

這項研究的貢獻,在於克服單一神經元的不可解釋性,透過將神經元分群成特徵,研究人員將能夠更好地理解模型,並且發展更具安全性和可靠性的人工智慧服務。未來Anthropic研究人員會擴大研究範疇,理解大型語言模型的行為。

熱門文章
灰度即將亮相iGB LiVE 2025展位Z64。我們倫敦見
灰度頭條
哥倫比亞將提高在線賭博稅率
賭場監管
SiGMA Asia 2025即將到來,灰度展位2250準備就緒,和我們共赴馬尼拉
灰度頭條
英國確認各垂直行業的賭博稅稅率
賭場監管
菲律賓網絡賭博和加密貨幣仍構成持續的洗錢風險
東南亞資訊
印第安納州在線賭場法案在眾議院委員會停滯不前
賭場監管
越南在線博彩業政策收緊 催生市場新機遇
東南亞資訊
西班牙監管機構警告在線賭博平臺存在身份盜竊行為
賭場監管
美國博彩收入在七月創下新高
網路賭博
計劃重建商業法院以惠及馬耳他博彩行業
賭場監管
7000+行業精英齊聚,Affiliate World Dubai 2025精彩回顧
灰度頭條
賀錦麗首提及數位資產,Coinbase:拜登與沃倫的時代結束了
支付動態
首頁
遊戲
合作
發現
我的